Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.405
Filtrar
1.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606592

RESUMO

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Assuntos
Lipoilação , Simulação de Dinâmica Molecular , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Sinalização YAP/metabolismo , Ligação Proteica , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/química , Transativadores/antagonistas & inibidores , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química
2.
Nat Commun ; 15(1): 1445, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365983

RESUMO

More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility. The C-terminal IDR of pioneer factor Sox2 is highly disordered but its conformational dynamics are guided by weak and dynamic charge interactions with the folded DNA binding domain. Both DNA and nucleosome binding induce major rearrangements in the IDR ensemble without affecting DNA binding affinity. Remarkably, interdomain interactions are redistributed in complex with DNA leading to variable exposure of two activation domains critical for transcription. Charged intramolecular interactions allowing for dynamic redistributions may be common in transcription factors and necessary for sensitive tuning of structural ensembles.


Assuntos
Proteínas Intrinsicamente Desordenadas , Fatores de Transcrição SOXB1 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/química , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/genética
3.
Nucleus ; 15(1): 2321265, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38411156

RESUMO

Promyelocytic leukemia (PML) nuclear bodies, membrane-less organelles in the nucleus, play a crucial role in cellular homeostasis. These dynamic structures result from the assembly of scaffolding PML proteins and various partners. Recent crystal structure analyses revealed essential self-interacting domains, while liquid-liquid phase separation contributes to their formation. PML bodies orchestrate post-translational modifications, particularly stress-induced SUMOylation, impacting target protein functions. Serving as hubs in multiple signaling pathways, they influence cellular processes like senescence. Dysregulation of PML expression contributes to diseases, including cancer, highlighting their significance. Therapeutically, PML bodies are promising targets, exemplified by successful acute promyelocytic leukemia treatment with arsenic trioxide and retinoic acid restoring PML bodies. Understanding their functions illuminates both normal and pathological cellular physiology, guiding potential therapies. This review explores recent advancements in PML body biogenesis, biochemical activity, and their evolving biological roles.


Assuntos
Leucemia Promielocítica Aguda , Corpos Nucleares da Leucemia Promielocítica , Humanos , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia
4.
Mol Cell ; 84(5): 926-937.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387461

RESUMO

During transcription elongation, NusG aids RNA polymerase by inhibiting pausing, promoting anti-termination on rRNA operons, coupling transcription with translation on mRNA genes, and facilitating Rho-dependent termination. Despite extensive work, the in vivo functional allocation and spatial distribution of NusG remain unknown. Using single-molecule tracking and super-resolution imaging in live E. coli cells, we found NusG predominantly in a chromosome-associated population (binding to RNA polymerase in elongation complexes) and a slowly diffusing population complexed with the 30S ribosomal subunit; the latter provides a "30S-guided" path for NusG into transcription elongation. Only ∼10% of NusG is fast diffusing, with its mobility suggesting non-specific interactions with DNA for >50% of the time. Antibiotic treatments and deletion mutants revealed that chromosome-associated NusG participates mainly in rrn anti-termination within phase-separated transcriptional condensates and in transcription-translation coupling. This study illuminates the multiple roles of NusG and offers a guide on dissecting multi-functional machines via in vivo imaging.


Assuntos
Proteínas de Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/química , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Bactérias/genética
5.
Chem Biodivers ; 21(2): e202301584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163253

RESUMO

XY153 is a promising BET BD2 inhibitor with an IC50 value of 0.79 nM against BRD4 BD2. It shows 354-fold selectivity over BRD4-BD1 and 6-fold selectivity over other BET BD2 domains. However, the reported synthesis route of XY153 and its derivatives are extremely poor-yielding. After the synthesis of three key fragments, XY153 can only be obtained with a yield of 1.3 % in the original four-step reaction. In this study, we reported a three-step alternative route in the synthesis process of XY153. The reaction conditions for this route were thoroughly investigated and optimized, resulting in a significantly improved yield of 61.5 %. This efficient synthesis route establishes a robust chemical foundation for the rapid synthesis of XY153 derivatives as BET BD2 inhibitors in the near future.


Assuntos
Antineoplásicos , Fatores de Transcrição , Fatores de Transcrição/química , Proteínas Nucleares/química , Proteínas de Ciclo Celular
6.
J Phys Chem B ; 128(2): 465-471, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37991741

RESUMO

The recent discovery of metamorphic proteins, which can switch between multiple conformations under native conditions, has challenged the well-established one sequence-one structure paradigm of protein folding. This is exemplified in the C-terminal domain of the multidomain transcription factor RfaH, which converts from an α-helical coiled-coil conformation in its autoinhibited state to a ß-barrel conformation upon activation. Here, we use multisite line shape analysis of 19F NMR-monitored equilibrium chemical denaturation measurements of two 19F-labeled variants of full-length RfaH, to show that it folds/unfolds slowly on the NMR time scale, in an apparent all-or-none fashion at physiological pH and room temperature in the 3.3-4.8 M urea concentration range. The significant thermodynamic stability and slow unfolding rate (kinetic stability) are likely responsible for maintaining the closed autoinhibited state of RfaH, preventing spurious interactions with RNA polymerase (RNAP) when not functional. Our results provide a quantitative understanding of the folding-function relationship in the model fold-switching protein RfaH.


Assuntos
Proteínas de Escherichia coli , Transativadores , Transativadores/química , Proteínas de Escherichia coli/química , Estrutura Terciária de Proteína , Fatores de Alongamento de Peptídeos/química , Fatores de Transcrição/química , Dobramento de Proteína , Desnaturação Proteica
7.
J Biol Chem ; 300(2): 105568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103640

RESUMO

Upon Mg2+ starvation, a condition often associated with virulence, enterobacteria inhibit the ClpXP-dependent proteolysis of the master transcriptional regulator, σs, via IraM, a poorly understood antiadaptor that prevents RssB-dependent loading of σs onto ClpXP. This inhibition results in σs accumulation and expression of stress resistance genes. Here, we report on the structural analysis of RssB bound to IraM, which reveals that IraM induces two folding transitions within RssB, amplified via a segmented helical linker. These conformational changes result in an open, yet inhibited RssB structure in which IraM associates with both the C-terminal and N-terminal domains of RssB and prevents binding of σs to the 4-5-5 face of the N-terminal receiver domain. This work highlights the remarkable structural plasticity of RssB and reveals how a stress-specific RssB antagonist modulates a core stress response pathway that could be leveraged to control biofilm formation, virulence, and the development of antibiotic resistance.


Assuntos
Proteínas de Escherichia coli , Modelos Moleculares , Fatores de Transcrição , Endopeptidase Clp/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Terciária de Proteína , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
8.
Nucleic Acids Res ; 52(5): 2260-2272, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38109289

RESUMO

Intrinsically disordered regions (IDRs) are abundant in eukaryotic proteins, but their sequence-function relationship remains poorly understood. IDRs of transcription factors (TFs) can direct promoter selection and recruit coactivators, as shown for the budding yeast TF Msn2. To examine how IDRs encode both these functions, we compared genomic binding specificity, coactivator recruitment, and gene induction amongst a large set of designed Msn2-IDR mutants. We find that both functions depend on multiple regions across the > 600AA IDR. Yet, transcription activity was readily disrupted by mutations that showed no effect on the Msn2 binding specificity. Our data attribute this differential sensitivity to the integration of a relaxed, composition-based code directing binding specificity with a more stringent, motif-based code controlling the recruitment of coactivators and transcription activity. Therefore, Msn2 utilizes interwoven sequence grammars for encoding multiple functions, suggesting a new IDR design paradigm of potentially general use.


Assuntos
Proteínas de Ligação a DNA , Proteínas Intrinsicamente Desordenadas , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Regulação da Expressão Gênica , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Mutação , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo
9.
Nucleic Acids Res ; 52(3): 1435-1449, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38142455

RESUMO

Transcription regulators play central roles in orchestrating responses to changing environmental conditions. Recently the Caulobacter crescentus transcription activator DriD, which belongs to the newly defined WYL-domain family, was shown to regulate DNA damage responses independent of the canonical SOS pathway. However, the molecular mechanisms by which DriD and other WYL-regulators sense environmental signals and recognize DNA are not well understood. We showed DriD DNA-binding is triggered by its interaction with ssDNA, which is produced during DNA damage. Here we describe the structure of the full-length C. crescentus DriD bound to both target DNA and effector ssDNA. DriD consists of an N-terminal winged-HTH (wHTH) domain, linker region, three-helix bundle, WYL-domain and C-terminal WCX-dimer domain. Strikingly, DriD binds DNA using a novel, asymmetric DNA-binding mechanism that results from different conformations adopted by the linker. Although the linker does not touch DNA, our data show that contacts it makes with the wHTH are key for specific DNA binding. The structure indicates how ssDNA-effector binding to the WYL-domain impacts wHTH DNA binding. In conclusion, we present the first structure of a WYL-activator bound to both effector and target DNA. The structure unveils a unique, asymmetric DNA binding mode that is likely conserved among WYL-activators.


Assuntos
Proteínas de Bactérias , Caulobacter , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Caulobacter/metabolismo , DNA/química , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Ann Hum Genet ; 88(1): 58-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37905714

RESUMO

Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.


Assuntos
Rim Policístico Autossômico Recessivo , Receptores de Superfície Celular , Humanos , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , RNA , Fatores de Transcrição/química , Proteínas do Espermatozoide/química , Conformação Proteica
11.
J Biol Chem ; 299(12): 105440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949227

RESUMO

In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-ß5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.


Assuntos
Proteínas de Ligação a DNA , Endopeptidase Clp , Proteínas de Escherichia coli , Escherichia coli , Proteólise , Fator sigma , Fatores de Transcrição , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Ativação Enzimática , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Fosforilação , Domínios Proteicos , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
12.
J Mol Biol ; 435(23): 168314, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852600

RESUMO

Enhancers are DNA regions that are responsible for controlling the expression of genes. Enhancers are usually found upstream or downstream of a gene, or even inside a gene's intron region, but are normally located at a distant location from the genes they control. By integrating experimental and computational approaches, it is possible to uncover enhancers within DNA sequences, which possess regulatory properties. Experimental techniques such as ChIP-seq and ATAC-seq can identify genomic regions that are associated with transcription factors or accessible to regulatory proteins. On the other hand, computational techniques can predict enhancers based on sequence features and epigenetic modifications. In our study, we have developed a multi-classifier stacked ensemble (MCSE-enhancer) model that can accurately identify enhancers. We utilized feature descriptors from various physiochemical properties as input for our six baseline classifiers and built a stacked classifier, which outperformed previous enhancer classification techniques in terms of accuracy, specificity, sensitivity, and Mathew's correlation coefficient. Our model achieved an accuracy of 81.5%, representing a 2-3% improvement over existing models.


Assuntos
Biologia Computacional , Elementos Facilitadores Genéticos , Aprendizado de Máquina , Análise de Sequência de DNA , Biologia Computacional/métodos , DNA/química , DNA/genética , Fatores de Transcrição/química , Análise de Sequência de DNA/métodos
13.
Science ; 381(6664): eadd1250, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733848

RESUMO

Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.


Assuntos
Regulação da Expressão Gênica , Repetições de Microssatélites , Fatores de Transcrição , Células Eucarióticas , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ligação Proteica , Humanos , Animais , Saccharomyces cerevisiae , Domínios Proteicos , Conformação Proteica
14.
Angew Chem Int Ed Engl ; 62(39): e202308650, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37548640

RESUMO

RNA, unlike DNA, folds into a multitude of secondary and tertiary structures. This structural diversity has impeded the development of ligands that can sequence-specifically target this biomolecule. We sought to develop ligands for double-stranded RNA (dsRNA) segments, which are ubiquitous in RNA tertiary structure. The major groove of double-stranded DNA is sequence-specifically recognized by a range of dimeric helical transcription factors, including the basic leucine zippers (bZIP) and basic helix-loop-helix (bHLH) proteins; however, such simple structural motifs are not prevalent in RNA-binding proteins. We interrogated the high-resolution structures of DNA and RNA to identify requirements for a helix fork motif to occupy dsRNA major grooves akin to dsDNA. Our analysis suggested that the rigidity and angle of approach of dimeric helices in bZIP/bHLH motifs are not ideal for the binding of dsRNA major grooves. This investigation revealed that the replacement of the leucine zipper motifs in bHLH proteins with synthetic crosslinkers would allow recognition of dsRNA. We show that a model bHLH DNA-binding motif does not bind dsRNA but can be reengineered as an RNA ligand. Based on this hypothesis, we rationally designed a miniature synthetic crosslinked helix fork (CHF) as a generalizable proteomimetic scaffold for targeting dsRNA. We evaluated several CHF constructs against a set of RNA and DNA hairpins to probe the specificity of the designed construct. Our studies reveal a new class of proteomimetics as an encodable platform for sequence-specific recognition of dsRNA.


Assuntos
Zíper de Leucina , Fatores de Transcrição , Sequência de Aminoácidos , Ligantes , Fatores de Transcrição/química , DNA/química , RNA de Cadeia Dupla , Sítios de Ligação
15.
Int J Biol Macromol ; 247: 125792, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442507

RESUMO

UV-stimulated scaffold protein A (UVSSA) is a key protein in the Transcription-Coupled Nucleotide Excision Repair (TC-NER) pathway. UVSSA, an intrinsically disordered protein, interacts with multiple members of the pathway, tethering them into the complex. Several studies have reported that UVSSA recruits Transcription Factor IIH (TFIIH) via direct interaction, following which CSB is degraded and the lesion recognition TC-NER complex dissociates from the damage site to facilitate the DNA repair. Structural insights into these events remain largely unknown. Herein, we have investigated the interaction of human UVSSA with the Pleckstrin-Homology-domain of p62 subunit of TFIIH (p62-PHD) using biophysical techniques. We observed that UVSSA forms a stable complex with the p62-PHD in vitro. Small-angle scattering measurements using X-rays and neutrons revealed a significant change in pair-distance distribution function for UVSSA662/p62-PHD complex compared to UVSSA alone. Additionally, a significant decrease was observed in the radius of gyration of the complex. Our findings suggest that TFIIH binding to UVSSA causes significant conformational changes in UVSSA. We hypothesize that these conformational changes play an important role in the dissociation of the lesion recognition TC-NER complex.


Assuntos
Proteínas de Transporte , Fatores de Transcrição , Humanos , Reparo do DNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínios Proteicos , Mapeamento de Interação de Proteínas , Dicroísmo Circular , Espalhamento a Baixo Ângulo , Nêutrons , Mutação
16.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443729

RESUMO

The SMYD family is a unique class of lysine methyltransferases (KMTases) whose catalytic SET domain is split by a MYND domain. Among these, Smyd1 was identified as a heart- and skeletal muscle-specific KMTase and is essential for cardiogenesis and skeletal muscle development. SMYD1 has been characterized as a histone methyltransferase (HMTase). Here we demonstrated that SMYD1 methylates is the Skeletal muscle-specific splice variant of the Nascent polypeptide-Associated Complex (skNAC) transcription factor. SMYD1-mediated methylation of skNAC targets K1975 within the carboxy-terminus region of skNAC. Catalysis requires physical interaction of SMYD1 and skNAC via the conserved MYND domain of SMYD1 and the PXLXP motif of skNAC. Our data indicated that skNAC methylation is required for the direct transcriptional activation of myoglobin (Mb), a heart- and skeletal muscle-specific hemoprotein that facilitates oxygen transport. Our study revealed that the skNAC, as a methylation target of SMYD1, illuminates the molecular mechanism by which SMYD1 cooperates with skNAC to regulate transcriptional activation of genes crucial for muscle functions and implicates the MYND domain of the SMYD-family KMTases as an adaptor to target substrates for methylation.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase , Chaperonas Moleculares , Desenvolvimento Muscular , Proteínas Musculares , Fatores de Transcrição , Ativação Transcricional , Humanos , Catálise , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Chaperonas Moleculares/metabolismo , Desenvolvimento Muscular/genética , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Chem Inf Model ; 63(12): 3839-3853, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37307148

RESUMO

Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes. We also reveal that the base-specific Sox:DNA interactions (base reading) and Sox-induced DNA changes (shape reading) are concurrently required for sequence-specific nucleosomal DNA recognition. Among three different nucleosome positions located on the positive DNA arm, a sequence-specific reading mechanism is solely satisfied at the superhelical location 2 (SHL2). While SHL2 acts transparently for solvent-facing Sox binding, among the other two positions, SHL4 permits only shape reading. The final position, SHL0 (dyad), on the other hand, allows no reading mechanism. These findings demonstrate that Sox-based nucleosome recognition is essentially guided by intrinsic nucleosome properties, permitting varying degrees of DNA recognition.


Assuntos
Nucleossomos , Fatores de Transcrição , Fatores de Transcrição/química , DNA/química , Regulação da Expressão Gênica
18.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37328639

RESUMO

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.


Assuntos
DNA , Redes Neurais de Computação , Sítios de Ligação , Ligação Proteica , DNA/genética , DNA/química , Fatores de Transcrição/genética , Fatores de Transcrição/química
19.
J Photochem Photobiol B ; 245: 112733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311303

RESUMO

In cells that are exposed to terrestrial sunlight, the indole moiety in the side chain of tryptophan (Trp) can suffer photo/oxidative damage (POD) by reactive oxygen species (ROS) and/or ultraviolet light (UV-B). Trp is oxidized to produce N-formylkynurenine (NFK), a UV-A-responsive photosensitizer that further degenerates into photosensitizers capable of generating ROS through exposure to visible light. Thus, Trp-containing proteins function as both victims, and perpetrators, of POD if they are not rapidly replaced through protein turnover. The literature indicates that protein turnover and DNA repair occur poorly in chromosomal interiors. We contend, therefore, that basic chromosomal proteins (BCPs) that are enveloped by DNA should have evolved to lack Trp residues in their amino acid sequences, since these could otherwise function as 'Trojan horse-type' DNA-damaging agents. Our global analyses of protein sequences demonstrates that BCPs consistently lack Trp residues, although DNA-binding proteins in general do not display such a lack. We employ HU-B (a wild-type, Trp-lacking bacterial BCP) and HU-B F47W (a mutant, Trp-containing form of the same bacterial BCP) to demonstrate that the possession of Trp is deleterious to BCPs and associated chromosomal DNA. Basically, we show that UV-B and UV-A (a) cause no POD in HU-B, but cause extensive POD in HU-B F47W (in vitro), as well as (b) only nominal DNA damage in bacteria expressing HU-B, but extensive DNA damage in bacteria expressing F47W HU-B (in vivo). Our results suggest that Trp-lacking BCPs could have evolved to reduce scope for protein-facilitated, sunlight-mediated damage of DNA by UV-A and visible light, within chromosomal interiors that are poorly serviced by protein turnover and DNA repair machinery.


Assuntos
Proteínas de Bactérias , Cromossomos , Dano ao DNA , Genoma , Histonas , Estresse Oxidativo , Luz Solar , Triptofano , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Cromossomos/química , Cromossomos/metabolismo , Cromossomos/efeitos da radiação , Cromossomos Bacterianos/química , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/efeitos da radiação , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Genoma/genética , Genoma/efeitos da radiação , Histonas/química , Histonas/metabolismo , Histonas/efeitos da radiação , Concentração de Íons de Hidrogênio , Marcação In Situ das Extremidades Cortadas , Fatores Hospedeiros de Integração/química , Oxirredução/efeitos da radiação , Fenilalanina/genética , Fármacos Fotossensibilizantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/química , Triptofano/deficiência , Triptofano/genética , Triptofano/metabolismo , Raios Ultravioleta
20.
J Biol Chem ; 299(6): 104777, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142222

RESUMO

Mycobacterium tuberculosis (Mtb) WhiB3 is an iron-sulfur cluster-containing transcription factor belonging to a subclass of the WhiB-Like (Wbl) family that is widely distributed in the phylum Actinobacteria. WhiB3 plays a crucial role in the survival and pathogenesis of Mtb. It binds to the conserved region 4 of the principal sigma factor (σA4) in the RNA polymerase holoenzyme to regulate gene expression like other known Wbl proteins in Mtb. However, the structural basis of how WhiB3 coordinates with σA4 to bind DNA and regulate transcription is unclear. Here we determined crystal structures of the WhiB3:σA4 complex without and with DNA at 1.5 Å and 2.45 Å, respectively, to elucidate how WhiB3 interacts with DNA to regulate gene expression. These structures reveal that the WhiB3:σA4 complex shares a molecular interface similar to other structurally characterized Wbl proteins and also possesses a subclass-specific Arg-rich DNA-binding motif. We demonstrate that this newly defined Arg-rich motif is required for WhiB3 binding to DNA in vitro and transcriptional regulation in Mycobacterium smegmatis. Together, our study provides empirical evidence of how WhiB3 regulates gene expression in Mtb by partnering with σA4 and engaging with DNA via the subclass-specific structural motif, distinct from the modes of DNA interaction by WhiB1 and WhiB7.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Mycobacterium tuberculosis , Fatores de Transcrição , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estrutura Quaternária de Proteína , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...